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EXECUTIVE SUMMARY 
To mitigate the risks of financial loss and fraud, smart contract developers must prioritize smart 
contract security best practices from the outset. While numerous tools are available in the 
space, promising to identify vulnerabilities and propose fixes, there is no one-size-fits-all 
solution. It is crucial to select tools with broad coverage, easy integration, and generic 
applicability to reinforce security and reliability throughout the smart contract's development 
lifecycle. 
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1. INTRODUCTION 
Blockchains are practically immutable*, meaning that once a transaction is recorded on the 
blockchain, it cannot be altered. Smart contracts are self-executing in the sense that they can 
automatically enforce the terms of the agreement without the need for human intervention. 
That said, once they are deployed on the blockchain, they automatically execute when a 
specific trigger condition is met. In a trustless environment where human bias in decision 
making is absent, smart contracts can establish trust among parties. This also makes them a 
target for malicious attacks. Therefore, it is important to thoroughly analyze smart contracts to 
ensure that they have zero security vulnerabilities before deploying them on the blockchain, 
as a single vulnerability could result in significant financial losses. 

Smart contract programming requires a different engineering mindset compared to traditional 
programming. The cost of failure can be high and updating deployed contracts can be 
challenging. Therefore, it's essential for developers to defend against known vulnerabilities 
while staying up to date with changes in the security landscape. Various analysis techniques 
and tools have been developed over time to ensure that smart contracts are safe and secure. 

This paper covers common developer oversights that can result in security breaches in smart 
contracts, followed by a systematic review of different open-sourced Ethereum smart contract 
analysis tools and techniques. The objective of this review is to assist developers in selecting 
the best toolset to perform security analysis for their smart contracts. In total, 25 tools were 
analyzed. In the interest of brevity, we offer a comparative analysis of only a subset of more 
conspicuous tools. Obsolete tools, which are no longer supported by the community or newer 
versions of solidity, were not considered.  

Finally, this paper describes our recommended approach towards the creation of a project 
agnostic, simple and easy-to-use, Continuous-Development-Continuous-Testing (CD/CT) 
pipeline by employing the tools selected in our review. Adherence to a CD/CT development 
paradigm should significantly reduce the chance of bugs in the development of smart 
contracts, promote adherence to code quality and best practices during development and 
testing phases, and provide greater confidence in deploying them on a public blockchain. 

 

 

 

 
 

 

* Immutability of Blockchains can be challenged in certain situations, such as in public chains with 51% attacks or private chains with less rigorous consensus protocols. That 
said, it’s important to note that in Bitcoin, immutability is ensured by chaining blocks with hashes, which increases the difficulty of modifying older blocks. On the other hand, 
in Fabric, given that block chaining does not contribute to immutability hardness and tampering with the ledger could be accomplished quickly with a compromised private 
key, the design of Fabric does not permit ledger forks and any such occurrence is a signal of an issue that necessitates manual intervention 
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2. COMMON DEVELOPER OVERSIGHTS 
In Q1 2022 alone, the DeFi industry lost over $1.6 billion [1] due to exploits, surpassing the total 
amount stolen in 2020 and 2021 combined. Some protocols were hacked because of simple 
code errors, while others were vulnerable due to inefficient contract logic or incorrect 
calculations. The Smart Contract Weakness Classification Registry [11] compiles a list of smart 
contract vulnerabilities with test cases for developers' reference. Let's go over some of the 
most common developer oversights [4] that have resulted in the loss of funds. 

 

2.1. Integer Arithmetic Errors [2,5] 
Smart contracts use integers to represent numbers, as they do not support floating-point 
numbers. This means that numerical values must be expressed in smaller units, such as 18 
decimal places, to maintain precision. A simple example of this concept is using cents instead 
of dollars, as $0.5 cannot be represented using integers. When integers reach their maximum 
value, they loop back to the minimum value, which can cause issues with overflow. Overflows 
are shown in in the figures below, for both unsigned and signed integers. As soon as the stored 
value reaches 0xff…fff, adding 1 will reset the storage to minimum value, i.e., 0x0. 

 

Figure 1: Integer Overflows  

To avoid these mistakes, using the latest version of Solidity (solc v8 onwards) is crucial as it 
comes with built-in support to handle overflows. Utilizing libraries like Open Zeppelin's 
safe math can also be beneficial. Paying close attention to the order of operations 
when working with integers in smart contracts is also key. Let's look at an example code: 
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Figure 2: Integer Overflow Code Sample  

This contract is meant to lock the user’s Ether for a week and is vulnerable to 
overflow/underflow attacks because the withdrawFunds() function logic is dependent on a 
uint. A malicious actor could write code to deposit Ether to the contract and then withdraw a 
larger amount before the lock period, lockTime expires, by “overflowing” (essentially, 
resetting) the lock time function, increaseLockTime, to zero. 

 

2.2. Block Gas Limit Vulnerabilities [4,5] 
The block gas limit ensures that the amount of gas consumed by transactions in blocks is kept 
within a certain limit, to ensure that the transactions can be executed. However, if data is 
stored in dynamic arrays and then accessed through loops, the transaction may not have 
enough gas and be undone. This can occur when the number of elements in the array 
becomes large. This problem is particularly dangerous because it can go unnoticed during 
testing since test data is often smaller. Contracts with this issue may pass unit tests and appear 
to work well with a small number of users, but they can fail when the amount of data increases. 
It is not uncommon for funds to become irretrievable if loops are used to make payments. In 
these cases, one needs to keep track of how far the processing is done, and be able to resume 
from that point, as in the following example: 
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Figure 3: Block Gas Limit Vulnerability Code Sample  

Developers need to make sure that other transactions don’t have any critical dependency on 
the payOutFunction() and are processed successfully while waiting for its next iteration.     

 

2.3. Reentrancy [3,4] 
A Reentrancy Attack is an improper enforcement of behavioral workflow. Ethereum smart 
contracts can call and utilize the code of external contracts and, in many cases, send ether to 
external user addresses. Cybercriminals can steal these external calls and force the contract to 
execute a call back to itself (using a malicious fallback function). The execution of the code “re-
enters” the contract recursively before the contract can update its state and drains the funds. 
To prevent this, one can use the built-in transfer() function when sending ether 
to an external contract as it only sends 2300 gas, which isn't enough for the destination 
address/contract to re-enter the sending contract, along with ensuring that all state-change 
logics execute before ether is sent out of the contract. For example: 

 

Figure 4: Reentrancy Vulnerability Code Sample  

The above code resets the value of the userFunds back to zero after the withdrawFunds() 
function is called. This makes the contracts vulnerable to reentrancy attacks because it sends 
Ether to the user before updating the user’s balance, giving the receiver an opportunity to call 
the contract again in its fallback function before the balance is updated. 
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2.4. Frontrunning [4] 
Frontrunning can be defined as overtaking an unconfirmed transaction. Blockchains are 
designed to be transparent which means that all unconfirmed transactions are visible in the 
mempool before they are included in a block by a miner. A malicious party could monitor 
mempool transactions for their content and overtake them by paying a higher transaction fee. 
For example, let’s say, Alice grants Bob permission to use 100 tokens. Later, Alice decides to 
revoke this permission and attempts to reduce Bob's allocation to 50 tokens. However, Bob, 
who is monitoring the transaction closely, quickly creates his own transaction spending the 
original 100 tokens and uses a higher gas price, which prioritizes his transaction over Alice's. 
This can result in Bob being able to access 150 tokens.  

One way to prevent front-running is to set a maximum limit on the gas price in the smart 
contract, making it impossible for users to change the gas price. However, this approach only 
protects against typical users, as miners can still bypass the limit. Additionally, it can be 
challenging for miners to target a specific block, so in many cases, this may not be a concern. 
Another method to prevent front-running is to use a commit-and-reveal scheme. This involves 
sending an encrypted transaction first (the commit phase), and then later, sending another 
transaction that decrypts the information from the first transaction (the reveal phase). This 
approach makes it impossible for both typical users and miners to perform 
front-running attacks. 

 

3. SMART CONTRACT TESTING AND COMMON VULNERABILITY 
ANALYSIS TECHNIQUES 
Smart contract testing involves thoroughly analyzing and evaluating the source code during 
development to ensure its quality. By testing a smart contract, potential bugs and 
vulnerabilities can be identified and addressed, reducing the risk of costly software errors. 
Strategies for testing Ethereum smart contracts can be classified into two broad categories: 
manual testing and automated testing [6]. 

 

3.1. Manual Testing 
Manual testing of smart contracts is a process where humans conduct testing by executing 
steps manually. Code audits, where developers and/or auditors go over every line of contract 
code, are an example of manual testing. However, manual testing requires an attacker mindset 
and a significant investment of time, money, and effort. It can also be prone to human errors, 
such as missing a data type deep down in a complex function call-stack, which may lead to 
overflows. Despite these limitations, manual code audits leverage the unique capabilities of 
humans, such as understanding and analyzing code in a way that automated tools cannot, 
resulting in a more thorough and nuanced examination of the code. 
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3.2. Automated Testing 
Automated testing involves using tools, which can execute repeated tests, to carry out scripted 
testing of smart contracts. Automated testing is efficient, uses fewer resources, and promises 
higher levels of coverage than manual analysis. Automated tests can also be configured with 
test data, allowing them to compare predicted behaviors with actual results. 

We will concentrate the following sections towards the three most common automated 
analysis techniques: Static and Dynamic analysis, upon which most popular tools are built. 

 

3.2.1. Static Analysis [6] 
Static code analysis is a method of debugging by examining source code before a program is 
executed. It's done by analyzing a set of code against a set (or multiple sets) of coding rules 
and is often used interchangeably, along with source code analysis. Static analyzers can detect 
common vulnerabilities in Ethereum smart contracts and aid compliance with best practices. 

 

3.2.2. Dynamic Analysis [6] 
Dynamic analysis requires executing the smart contract in a runtime environment to 
observe contract behaviors during execution. There are multiple techniques to 
achieve this; here are the two which stand out: 

1. Symbolic Execution explores multiple paths that a program could take under different 
inputs or symbolic values. The main goal of this technique is to explore as many 
different program paths as possible, generate a set of concrete input values to execute 
each generated path, and finally to check for the presence of errors. It allows creation 
of high coverage test suites and provides developers with concrete inputs that trigger 
bugs. Major challenges in effectively performing symbolic execution include constraint 
solving, combinations of which can easily go over hundreds of variables, compromising 
its efficiency and decidability, and space explosion, which prevents the engine from 
exhaustively exploring all possible paths within a reasonable amount of time due to the 
exponential increase in the number of execution paths.  

2. Fuzzing is another popular example of dynamic analysis. During fuzz testing, a fuzzer 
feeds the smart contract with malformed and invalid data and monitors how the 
contract responds to those inputs. Like any program, smart contracts rely on inputs 
provided by users to execute functions and sending incorrect input values to a smart 
contract can cause resource leaks, crashes, or worse, and lead to unintended code 
execution. 
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4. CONTINUOUS DEVELOPMENT/CONTINUOUS TESTING (CD/CT) 
SMART CONTRACT VULNERABILITY TESTING PIPELINE 
We examined over 25 open-sourced smart contract security analysis tools, but for brevity, we 
have provided a comparison of a few notable tools and excluded those that are no longer 
relevant. We grouped the tools based on the analysis techniques they use, and then evaluated 
them against a set of well-reasoned parameters. Through this approach, we have identified a 
selection of tools that we recommend for detecting vulnerabilities in smart contracts. 

Based on our analysis, we concluded that all open-source tools have limitations in terms of 
their capabilities in one way or another. Hence, the most effective way to create an efficient 
and well-rounded testing tool suite, capable of observing known bug patterns in an exhaustive 
manner, is likely picking the tool that performs each popular analysis technique the best. As 
we saw, the most common smart contract analysis techniques are static analysis, symbolic 
analysis, and fuzzing, which led us to pick Slither, Mythril and sFuzz, respectively, for our 
CD/CT smart contract test suite. Detailed analysis of tools is presented in table below:
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Slither  

Developed by 
Trail of Bits 

Static 
pip3, Linux 
+ Windows 

High Low 

Fast 

(< 1 sec per 
contract) 

>=0.4 Yes Good 78 Yes 

Offers APIs, has extendible core to cover additional 
vulnerabilities, comes with flattener. 

Can detect conformance to various ERCs (ERC20, ERC721) 
and checks for contracts using the delegate call proxy 
pattern for upgradable contracts. 

Extensive configurations provides numerous options to 
run analytics on a local file, Etherscan, and AST file.  

Options for different printers, detectors, path filtering, as 
well as Triage mode (users can mark false positives to be 
excluded from consecutive runs).  

Does not have detectors for integer overflow and 
underflow. 

SmartCheck 

Developed by 
SmartDec 

Static NPM Med High Average >=0.6.0 No 
Good 
(not color 
coded) 

20 
Yes 
(less 
thorough) 

First security tool written in Vyper (Python+Solidity).  

Can identify functional violations and operational issues 
like runtime problems and bad performance. 

Doesn't perform numerical analysis and therefore did not 
detect integer overflow/ underflow. 

Points out potential out out-of-gas problems. 

Manticore  

Developed by 
Trail of Bits 

Symbolic 

pip 

(python > 
3.7) 

Low Low Very Slow >=0.4 No Nice 13 No 

Besides Ethereum contracts, it can also scan x86/64, ARM 
binaries.  

Good code coverage - probability of spotting a 
vulnerability is high. 

Can’t find business logic vulnerabilities. 

Auto-generates inputs for triggering unique code paths 
and records instruction-level execution traces for crashes. 

Exposes its analysis engine via Python API 
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Securify2.0  

Developed by 
Ethereum 
Foundation + 
Chain Security 

Symbolic and 
Context 
Sensitive static 
analysis 

pip3 Medium High Slow >=0.5.8 No Poor 38 Yes 

Only supports flat contracts (no imports), must use 
flattener tools before using this.                                                                          

Lacks detection of numerical properties violation 
(overflow/ underflow) and reachability.                                              

Since it requires higher solidity version so 3 slither patterns 
and 2 SWC vulnerabilities are covered by solidity compiler 
itself. 

Mythril  

Developed by 
Consensys 

Symbolic 
Execution 

pip3  

only Linux 
Med Low / Med 

Slow 

(Depends on 
max recursion 
depth) 

>=0.4 Yes 

Good 
(detailed, 
not color 
coded) 

15 No 

Supports the analysis of multiple Blockchains other than 
Ethereum that make use of EVM and only require the EVM 
bytecode to analyze the smart contract.  

Mythril emulates contract execution, stores all execution 
branches, and strives to reach a "dangerous" contract 
state trying different parameter combinations and 
possible options.  

Performs numerical analysis, detects bad randomness, out 
of bounds array access and unprotected ether withdrawal. 

Fails to detect transaction order dependency, outdated 
compiler version and bad solidity coding best practices. 

Does not provide many control options such as path 
filtering and Triage mode. 

Slow due to trade-off between recursion depth and 
execution time.  

Maximum recursion depth can be controlled; default value 
is 12. 

Echidna  

Developed by 
Trail of Bits 

Fuzzing pip Med Low Average >=0.4 Yes Nice 14 No 

Generates inputs tailored to your actual code, powered by 
Slither to extract useful information before the fuzzing 
campaign.                 

Source code integration to identify covered lines of code. 

Reports maximum gas usage. 

Property based fuzzer. 

Overall, isn’t very practical due to bugs and setup 
challenges. 

ContractFuzzer 

Developed by 
Bo Jiang 

Fuzzing 
(property 
based) 

Docker Low High Slow N/A No Poor 7 No 

Leverages test oracles to execute the contract with 
multiple and different inputs to try to trigger a strange 
behaviour to spot vulnerabilities. 

Fuzzer engine does not use any feedback to improve the 
test suite. 

chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/arxiv.org/ftp/arxiv/papers/1807/1807.03932.pdf
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sFuzz 

Developed by 
Tai D. Nguyen 

Fuzzing 
(Brute-Force 
based) 

CMake Med Low/ Med Fast >=0.4 No Poor 9 No 

Leverages test oracles to execute the contract with 
multiple and different inputs to try to trigger a strange 
behaviour to spot vulnerabilities. 

Fuzzer engine does not use any feedback to improve the 
test suite. 

sFuzz requires only the EVM bytecode to fuzz smart 
contracts. 

Performs numerical analysis, detects numerical overflows 
and underflows. 

Uses evolutionary AFL fuzzer method (popular for c/c++ 
programs) with a lightweight multi-objective feedback-
guided adaptive strategy that targets those difficult-to-
cover branches. 

Based on a feedback-guided adaptive fuzzing technique 
which transforms the test generation problem into an 
optimization problem and uses feedback as an objective 
function in solving the optimization problem. 

sFuzz = AFT + Smart Contract + lightweight SBST. Broadly, 
it has 3 main components: runner, libfuzzer and liboracles. 

Can complement other symbolic execution tools to 
enhance code coverage of the fuzzer. 

Effective in achieving high code coverage. 

sFuzz is not property based, less scope for customization 
and randomization of inputs based on business logic. 

Fuzz testing in 
Foundry 

Fuzzying 
(property 
based) 

Foundry 
Binaries 

Unknown 

Variable 

(depends 
on 
properties) 

Unknown N/A Yes Poor Unknown No 

Foundry provides property based fuzzy testing for solidity 
based smart contracts as a way of testing general 
behaviours as opposed to isolated scenarios. 

2. "runs" refers to the number of scenarios the fuzzer 
tested. By default, the fuzzer will generate 256 scenarios, 
however, this can be configured using the 
FOUNDRY_FUZZ_RUNS environment variable. 

3. "μ" (Greek letter mu) is the mean gas used across all 
fuzz runs. 

4. "~" (tilde) is the median gas used across all fuzz runs. 

 
Table 1: Comparative Analysis of Ethereum Smart Contract Vulnerability Testing Tools [7], [8], [9], [10] 

* The data in columns 'Optimizations,' 'False-Positive Rates,' and 'Average Execution Times' are rated in relation to the performance data recorded for Slither. 

chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/arxiv.org/pdf/2004.08563.pdf
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Key for reporting text: 

Notes Output color coding by severity Reference to SWC Registry Examples & recommendations to fix 

Poor No No No 

Nice No Yes Yes 

Good Yes Yes Yes 

 
Table 2: Metrics for Poor | Nice | Good rating for reporting text generated by different tools. 

* If integration with a CI/CD pipeline is not mentioned in the documentation of the tool, then 'No' is reported. However, all tools 
can be containerized using Docker and integrated into a CI/CD pipeline. 

Note: Our current security pipeline engages Slither and Mythril to perform smart contract 
vulnerability analysis. While working with sFuzz, we faced some technical challenges which 
could not be resolved and our pull request to resolve the same is still pending for review by 
the community. In the meantime, we are also looking into Diligence Fuzzing, a tool by 
Consensys, as an alternative. In this paper, we cover only open-source tools. As Diligence 
Fuzzing is subscription based, it was kept out of our current analysis scope. 

As most of these tools come with platform specific dependencies, we chose to create our 
CD/CT pipeline using Docker. The Dockerfile utilizes a rust-based image and installs the tools 
and their required dependencies with baseline configuration settings. 

 

5. PROJECT SETUP AND SAMPLE RUN COMMANDS 
To setup our own CD/CT pipeline using docker, we can leverage latest rust image and extend 
it to install all the required dependencies, as enumerated in the list below:  

1. Python 

2. Slither 

3. Mythril 

4. Solidity Version Manager (SVM) 

Following is the Dockerfile with all the installation commands: 



 

 
15 

 

Figure 5: Sample security container Dockerfile. 
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If you need any other project specific tools, you can extend this base image and install them 
in your Dockerfile. However, this image should be sufficient for setting up and running 
our CD/CT security pipeline. 

Next, you need a docker-compose.yml file, to customize the CD/CT suite to your project’s 
specific needs. The compose file will pull and build the security container based upon the 
default configuration settings, which can be modified as needed. A sample configuration file 
is shown in the image below: 

 

 

 

 

Figure 6: Sample fact-solidity-security container docker-compose file. 

If you have your own Dockerfile, you can provide it in the `services.solidity-
security.build.{context | dockerfile}` tag. Proxy settings can be done using the `services.solidity-
security.build.args.{http_proxy | https_proxy}`  tags. The compose file is configured to read the 
tool configuration files from our `security` folder. 

The compose file associates the entire project directory structure as an external volume 
(`services.solidity-security.volumes`) to the security container. This enables the modifications in 
the files to be instantly reflected within the container without having to restart it. This aides the 

In case if you are using your custom image, you can 
change the image reference here. 
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developers by instantly verifying their changes to ensure that they did not accidentally 
introduce a potential bug in the system.  

As evident from the image above, the default directory for solidity contracts is `contracts` 
and solidity version set is `0.8.12`. This can be set to any other version, which the 
prebuilt SVM will install and use to compile contracts. 

Developers can toggle between running Slither and Mythril along with an option to run both. 
As Mythril is backed by a symbolic execution engine, it takes a bit longer to run. One complete 
run on our set of smart contracts lasted 20 minutes. Supporting configurations for both Slither 
and Mythril such as modes, depths, execution timeouts are kept in the compose file to allow 
easy reconfigurations without building the containers again and again. The container can 
easily be integrated with the Jenkins environment with its build status configured to the 
outputs of individual tools. 

Following are the snapshots of our slither.config.json and mythril.config.json files respectively. 
The configuration files provide individual parameters to report output folders, solidity compiler 
remapping’s, filter paths and report preferences etc. 

 

Figure 7: Sample Slither config file. 

Mythril, doesn’t provide many options to finetune report preferences as provided by Slither. 
You can only configure the solidity compiler remappings in its configuration file. Other 
required settings are done as run time parameters while executing the Mythril command tool. 

 

Figure 8: Sample Mythril config file. 

Finally, we have our script – run-vulnerability-tests.sh. The script, as shown in the image below, 
first reads the solidity compiler version, installs it if it isn’t available, sets the directory for 
publishing the reports (`security/reports/{mythril | slither}`), and then runs Slither and Mythril, 
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taking the configurations provided in their respective config files as well as environment 
variables set in the docker compose file. 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 
The security container can be built and started in the background with the help of the following 
command: 

docker-compose -f docker-compose-<example>.yml up -d 

And the containers can be stopped/torn down with the following command: 

docker-compose -f docker-compose-<example>.yml down 

Once the container is running, the reports can be generated using the following: 

docker exec solidity-security /security/run-vulnerability-tests.sh 

 

Figure 9: Sample script file to run Slither and Mythril. 
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6. CONCLUSION 
Securing smart contracts begins with thoroughly reviewing each line of code. It is crucial to 
formally verify contracts after they have been developed and tested but implementing 
effective security measures during the development process can help prevent bugs and make 
informed design choices. The CD/CT security pipeline described in this paper can facilitate 
this by allowing developers to continuously test changes without having to continually rebuild 
the security container. This system, which is based on Docker, is also easily extensible, saving 
time and reducing the need for reconfiguration. Additionally, the reports can be integrated 
into Jenkins jobs for more efficient builds. 
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