

1

SMART CONTRACT SECURITY

By: Meenakshi Singh

May, 2023

2

TABLE OF CONTENTS

EXECUTIVE SUMMARY.. 3

1. INTRODUCTION .. 4

2. COMMON DEVELOPER OVERSIGHTS ... 5

2.1. INTEGER ARITHMETIC ERRORS [2,5] .. 5
2.2. BLOCK GAS LIMIT VULNERABILITIES [4,5] .. 6
2.3. REENTRANCY [3,4] .. 7
2.4. FRONTRUNNING [4] ... 8

3. SMART CONTRACT TESTING AND COMMON VULNERABILITY ANALYSIS TECHNIQUES 8

3.1. MANUAL TESTING .. 8
3.2. AUTOMATED TESTING .. 9

3.2.1. STATIC ANALYSIS [6] ... 9
3.2.2. DYNAMIC ANALYSIS [6] ... 9

4. CONTINUOUS DEVELOPMENT/CONTINUOUS TESTING (CD/CT) SMART CONTRACT

VULNERABILITY TESTING PIPELINE ... 10

5. PROJECT SETUP AND SAMPLE RUN COMMANDS ... 14

6. CONCLUSION .. 19

7. REFERENCES ... 20

3

EXECUTIVE SUMMARY
To mitigate the risks of financial loss and fraud, smart contract developers must prioritize smart
contract security best practices from the outset. While numerous tools are available in the
space, promising to identify vulnerabilities and propose fixes, there is no one-size-fits-all
solution. It is crucial to select tools with broad coverage, easy integration, and generic
applicability to reinforce security and reliability throughout the smart contract's development
lifecycle.

4

1. INTRODUCTION
Blockchains are practically immutable*, meaning that once a transaction is recorded on the
blockchain, it cannot be altered. Smart contracts are self-executing in the sense that they can
automatically enforce the terms of the agreement without the need for human intervention.
That said, once they are deployed on the blockchain, they automatically execute when a
specific trigger condition is met. In a trustless environment where human bias in decision
making is absent, smart contracts can establish trust among parties. This also makes them a
target for malicious attacks. Therefore, it is important to thoroughly analyze smart contracts to
ensure that they have zero security vulnerabilities before deploying them on the blockchain,
as a single vulnerability could result in significant financial losses.

Smart contract programming requires a different engineering mindset compared to traditional
programming. The cost of failure can be high and updating deployed contracts can be
challenging. Therefore, it's essential for developers to defend against known vulnerabilities
while staying up to date with changes in the security landscape. Various analysis techniques
and tools have been developed over time to ensure that smart contracts are safe and secure.

This paper covers common developer oversights that can result in security breaches in smart
contracts, followed by a systematic review of different open-sourced Ethereum smart contract
analysis tools and techniques. The objective of this review is to assist developers in selecting
the best toolset to perform security analysis for their smart contracts. In total, 25 tools were
analyzed. In the interest of brevity, we offer a comparative analysis of only a subset of more
conspicuous tools. Obsolete tools, which are no longer supported by the community or newer
versions of solidity, were not considered.

Finally, this paper describes our recommended approach towards the creation of a project
agnostic, simple and easy-to-use, Continuous-Development-Continuous-Testing (CD/CT)
pipeline by employing the tools selected in our review. Adherence to a CD/CT development
paradigm should significantly reduce the chance of bugs in the development of smart
contracts, promote adherence to code quality and best practices during development and
testing phases, and provide greater confidence in deploying them on a public blockchain.

* Immutability of Blockchains can be challenged in certain situations, such as in public chains with 51% attacks or private chains with less rigorous consensus protocols. That
said, it’s important to note that in Bitcoin, immutability is ensured by chaining blocks with hashes, which increases the difficulty of modifying older blocks. On the other hand,
in Fabric, given that block chaining does not contribute to immutability hardness and tampering with the ledger could be accomplished quickly with a compromised private
key, the design of Fabric does not permit ledger forks and any such occurrence is a signal of an issue that necessitates manual intervention

5

2. COMMON DEVELOPER OVERSIGHTS
In Q1 2022 alone, the DeFi industry lost over $1.6 billion [1] due to exploits, surpassing the total
amount stolen in 2020 and 2021 combined. Some protocols were hacked because of simple
code errors, while others were vulnerable due to inefficient contract logic or incorrect
calculations. The Smart Contract Weakness Classification Registry [11] compiles a list of smart
contract vulnerabilities with test cases for developers' reference. Let's go over some of the
most common developer oversights [4] that have resulted in the loss of funds.

2.1. Integer Arithmetic Errors [2,5]
Smart contracts use integers to represent numbers, as they do not support floating-point
numbers. This means that numerical values must be expressed in smaller units, such as 18
decimal places, to maintain precision. A simple example of this concept is using cents instead
of dollars, as $0.5 cannot be represented using integers. When integers reach their maximum
value, they loop back to the minimum value, which can cause issues with overflow. Overflows
are shown in in the figures below, for both unsigned and signed integers. As soon as the stored
value reaches 0xff…fff, adding 1 will reset the storage to minimum value, i.e., 0x0.

Figure 1: Integer Overflows

To avoid these mistakes, using the latest version of Solidity (solc v8 onwards) is crucial as it
comes with built-in support to handle overflows. Utilizing libraries like Open Zeppelin's
safe math can also be beneficial. Paying close attention to the order of operations
when working with integers in smart contracts is also key. Let's look at an example code:

6

Figure 2: Integer Overflow Code Sample

This contract is meant to lock the user’s Ether for a week and is vulnerable to
overflow/underflow attacks because the withdrawFunds() function logic is dependent on a
uint. A malicious actor could write code to deposit Ether to the contract and then withdraw a
larger amount before the lock period, lockTime expires, by “overflowing” (essentially,
resetting) the lock time function, increaseLockTime, to zero.

2.2. Block Gas Limit Vulnerabilities [4,5]
The block gas limit ensures that the amount of gas consumed by transactions in blocks is kept
within a certain limit, to ensure that the transactions can be executed. However, if data is
stored in dynamic arrays and then accessed through loops, the transaction may not have
enough gas and be undone. This can occur when the number of elements in the array
becomes large. This problem is particularly dangerous because it can go unnoticed during
testing since test data is often smaller. Contracts with this issue may pass unit tests and appear
to work well with a small number of users, but they can fail when the amount of data increases.
It is not uncommon for funds to become irretrievable if loops are used to make payments. In
these cases, one needs to keep track of how far the processing is done, and be able to resume
from that point, as in the following example:

7

Figure 3: Block Gas Limit Vulnerability Code Sample

Developers need to make sure that other transactions don’t have any critical dependency on
the payOutFunction() and are processed successfully while waiting for its next iteration.

2.3. Reentrancy [3,4]
A Reentrancy Attack is an improper enforcement of behavioral workflow. Ethereum smart
contracts can call and utilize the code of external contracts and, in many cases, send ether to
external user addresses. Cybercriminals can steal these external calls and force the contract to
execute a call back to itself (using a malicious fallback function). The execution of the code “re-
enters” the contract recursively before the contract can update its state and drains the funds.
To prevent this, one can use the built-in transfer() function when sending ether
to an external contract as it only sends 2300 gas, which isn't enough for the destination
address/contract to re-enter the sending contract, along with ensuring that all state-change
logics execute before ether is sent out of the contract. For example:

Figure 4: Reentrancy Vulnerability Code Sample

The above code resets the value of the userFunds back to zero after the withdrawFunds()
function is called. This makes the contracts vulnerable to reentrancy attacks because it sends
Ether to the user before updating the user’s balance, giving the receiver an opportunity to call
the contract again in its fallback function before the balance is updated.

8

2.4. Frontrunning [4]
Frontrunning can be defined as overtaking an unconfirmed transaction. Blockchains are
designed to be transparent which means that all unconfirmed transactions are visible in the
mempool before they are included in a block by a miner. A malicious party could monitor
mempool transactions for their content and overtake them by paying a higher transaction fee.
For example, let’s say, Alice grants Bob permission to use 100 tokens. Later, Alice decides to
revoke this permission and attempts to reduce Bob's allocation to 50 tokens. However, Bob,
who is monitoring the transaction closely, quickly creates his own transaction spending the
original 100 tokens and uses a higher gas price, which prioritizes his transaction over Alice's.
This can result in Bob being able to access 150 tokens.

One way to prevent front-running is to set a maximum limit on the gas price in the smart
contract, making it impossible for users to change the gas price. However, this approach only
protects against typical users, as miners can still bypass the limit. Additionally, it can be
challenging for miners to target a specific block, so in many cases, this may not be a concern.
Another method to prevent front-running is to use a commit-and-reveal scheme. This involves
sending an encrypted transaction first (the commit phase), and then later, sending another
transaction that decrypts the information from the first transaction (the reveal phase). This
approach makes it impossible for both typical users and miners to perform
front-running attacks.

3. SMART CONTRACT TESTING AND COMMON VULNERABILITY
ANALYSIS TECHNIQUES
Smart contract testing involves thoroughly analyzing and evaluating the source code during
development to ensure its quality. By testing a smart contract, potential bugs and
vulnerabilities can be identified and addressed, reducing the risk of costly software errors.
Strategies for testing Ethereum smart contracts can be classified into two broad categories:
manual testing and automated testing [6].

3.1. Manual Testing
Manual testing of smart contracts is a process where humans conduct testing by executing
steps manually. Code audits, where developers and/or auditors go over every line of contract
code, are an example of manual testing. However, manual testing requires an attacker mindset
and a significant investment of time, money, and effort. It can also be prone to human errors,
such as missing a data type deep down in a complex function call-stack, which may lead to
overflows. Despite these limitations, manual code audits leverage the unique capabilities of
humans, such as understanding and analyzing code in a way that automated tools cannot,
resulting in a more thorough and nuanced examination of the code.

9

3.2. Automated Testing
Automated testing involves using tools, which can execute repeated tests, to carry out scripted
testing of smart contracts. Automated testing is efficient, uses fewer resources, and promises
higher levels of coverage than manual analysis. Automated tests can also be configured with
test data, allowing them to compare predicted behaviors with actual results.

We will concentrate the following sections towards the three most common automated
analysis techniques: Static and Dynamic analysis, upon which most popular tools are built.

3.2.1. Static Analysis [6]
Static code analysis is a method of debugging by examining source code before a program is
executed. It's done by analyzing a set of code against a set (or multiple sets) of coding rules
and is often used interchangeably, along with source code analysis. Static analyzers can detect
common vulnerabilities in Ethereum smart contracts and aid compliance with best practices.

3.2.2. Dynamic Analysis [6]
Dynamic analysis requires executing the smart contract in a runtime environment to
observe contract behaviors during execution. There are multiple techniques to
achieve this; here are the two which stand out:

1. Symbolic Execution explores multiple paths that a program could take under different
inputs or symbolic values. The main goal of this technique is to explore as many
different program paths as possible, generate a set of concrete input values to execute
each generated path, and finally to check for the presence of errors. It allows creation
of high coverage test suites and provides developers with concrete inputs that trigger
bugs. Major challenges in effectively performing symbolic execution include constraint
solving, combinations of which can easily go over hundreds of variables, compromising
its efficiency and decidability, and space explosion, which prevents the engine from
exhaustively exploring all possible paths within a reasonable amount of time due to the
exponential increase in the number of execution paths.

2. Fuzzing is another popular example of dynamic analysis. During fuzz testing, a fuzzer
feeds the smart contract with malformed and invalid data and monitors how the
contract responds to those inputs. Like any program, smart contracts rely on inputs
provided by users to execute functions and sending incorrect input values to a smart
contract can cause resource leaks, crashes, or worse, and lead to unintended code
execution.

10

4. CONTINUOUS DEVELOPMENT/CONTINUOUS TESTING (CD/CT)
SMART CONTRACT VULNERABILITY TESTING PIPELINE
We examined over 25 open-sourced smart contract security analysis tools, but for brevity, we
have provided a comparison of a few notable tools and excluded those that are no longer
relevant. We grouped the tools based on the analysis techniques they use, and then evaluated
them against a set of well-reasoned parameters. Through this approach, we have identified a
selection of tools that we recommend for detecting vulnerabilities in smart contracts.

Based on our analysis, we concluded that all open-source tools have limitations in terms of
their capabilities in one way or another. Hence, the most effective way to create an efficient
and well-rounded testing tool suite, capable of observing known bug patterns in an exhaustive
manner, is likely picking the tool that performs each popular analysis technique the best. As
we saw, the most common smart contract analysis techniques are static analysis, symbolic
analysis, and fuzzing, which led us to pick Slither, Mythril and sFuzz, respectively, for our
CD/CT smart contract test suite. Detailed analysis of tools is presented in table below:

11

N

am
e

A
na

ly
si

s
Te

ch
ni

q
ue

Pa
ck

ag
e

M
an

ge
r/

O
S

O
p

tim
iz

at
io

n*

Fa
ls

e
Po

si
tiv

es
*

A
ve

ra
ge

 E
xe

cu
tio

n
Ti

m
e*

So
lid

ity

V
er

si
on

Su

p
p

or
t

C
I/

C
D

 In
te

gr
at

io
n

R
ep

or
tin

g
Te

xt
*

N
o

SW
C

vu

ln
er

ab
ili

tie
s

C
od

e
&

O

p
tim

iz
at

io
n

Is
su

es

N
ot

es

Slither

Developed by
Trail of Bits

Static
pip3, Linux
+ Windows

High Low

Fast

(< 1 sec per
contract)

>=0.4 Yes Good 78 Yes

Offers APIs, has extendible core to cover additional
vulnerabilities, comes with flattener.

Can detect conformance to various ERCs (ERC20, ERC721)
and checks for contracts using the delegate call proxy
pattern for upgradable contracts.

Extensive configurations provides numerous options to
run analytics on a local file, Etherscan, and AST file.

Options for different printers, detectors, path filtering, as
well as Triage mode (users can mark false positives to be
excluded from consecutive runs).

Does not have detectors for integer overflow and
underflow.

SmartCheck

Developed by
SmartDec

Static NPM Med High Average >=0.6.0 No
Good
(not color
coded)

20
Yes
(less
thorough)

First security tool written in Vyper (Python+Solidity).

Can identify functional violations and operational issues
like runtime problems and bad performance.

Doesn't perform numerical analysis and therefore did not
detect integer overflow/ underflow.

Points out potential out out-of-gas problems.

Manticore

Developed by
Trail of Bits

Symbolic

pip

(python >
3.7)

Low Low Very Slow >=0.4 No Nice 13 No

Besides Ethereum contracts, it can also scan x86/64, ARM
binaries.

Good code coverage - probability of spotting a
vulnerability is high.

Can’t find business logic vulnerabilities.

Auto-generates inputs for triggering unique code paths
and records instruction-level execution traces for crashes.

Exposes its analysis engine via Python API

12

Securify2.0

Developed by
Ethereum
Foundation +
Chain Security

Symbolic and
Context
Sensitive static
analysis

pip3 Medium High Slow >=0.5.8 No Poor 38 Yes

Only supports flat contracts (no imports), must use
flattener tools before using this.

Lacks detection of numerical properties violation
(overflow/ underflow) and reachability.

Since it requires higher solidity version so 3 slither patterns
and 2 SWC vulnerabilities are covered by solidity compiler
itself.

Mythril

Developed by
Consensys

Symbolic
Execution

pip3

only Linux
Med Low / Med

Slow

(Depends on
max recursion
depth)

>=0.4 Yes

Good
(detailed,
not color
coded)

15 No

Supports the analysis of multiple Blockchains other than
Ethereum that make use of EVM and only require the EVM
bytecode to analyze the smart contract.

Mythril emulates contract execution, stores all execution
branches, and strives to reach a "dangerous" contract
state trying different parameter combinations and
possible options.

Performs numerical analysis, detects bad randomness, out
of bounds array access and unprotected ether withdrawal.

Fails to detect transaction order dependency, outdated
compiler version and bad solidity coding best practices.

Does not provide many control options such as path
filtering and Triage mode.

Slow due to trade-off between recursion depth and
execution time.

Maximum recursion depth can be controlled; default value
is 12.

Echidna

Developed by
Trail of Bits

Fuzzing pip Med Low Average >=0.4 Yes Nice 14 No

Generates inputs tailored to your actual code, powered by
Slither to extract useful information before the fuzzing
campaign.

Source code integration to identify covered lines of code.

Reports maximum gas usage.

Property based fuzzer.

Overall, isn’t very practical due to bugs and setup
challenges.

ContractFuzzer

Developed by
Bo Jiang

Fuzzing
(property
based)

Docker Low High Slow N/A No Poor 7 No

Leverages test oracles to execute the contract with
multiple and different inputs to try to trigger a strange
behaviour to spot vulnerabilities.

Fuzzer engine does not use any feedback to improve the
test suite.

chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/arxiv.org/ftp/arxiv/papers/1807/1807.03932.pdf

13

sFuzz

Developed by
Tai D. Nguyen

Fuzzing
(Brute-Force
based)

CMake Med Low/ Med Fast >=0.4 No Poor 9 No

Leverages test oracles to execute the contract with
multiple and different inputs to try to trigger a strange
behaviour to spot vulnerabilities.

Fuzzer engine does not use any feedback to improve the
test suite.

sFuzz requires only the EVM bytecode to fuzz smart
contracts.

Performs numerical analysis, detects numerical overflows
and underflows.

Uses evolutionary AFL fuzzer method (popular for c/c++
programs) with a lightweight multi-objective feedback-
guided adaptive strategy that targets those difficult-to-
cover branches.

Based on a feedback-guided adaptive fuzzing technique
which transforms the test generation problem into an
optimization problem and uses feedback as an objective
function in solving the optimization problem.

sFuzz = AFT + Smart Contract + lightweight SBST. Broadly,
it has 3 main components: runner, libfuzzer and liboracles.

Can complement other symbolic execution tools to
enhance code coverage of the fuzzer.

Effective in achieving high code coverage.

sFuzz is not property based, less scope for customization
and randomization of inputs based on business logic.

Fuzz testing in
Foundry

Fuzzying
(property
based)

Foundry
Binaries

Unknown

Variable

(depends
on
properties)

Unknown N/A Yes Poor Unknown No

Foundry provides property based fuzzy testing for solidity
based smart contracts as a way of testing general
behaviours as opposed to isolated scenarios.

2. "runs" refers to the number of scenarios the fuzzer
tested. By default, the fuzzer will generate 256 scenarios,
however, this can be configured using the
FOUNDRY_FUZZ_RUNS environment variable.

3. "μ" (Greek letter mu) is the mean gas used across all
fuzz runs.

4. "~" (tilde) is the median gas used across all fuzz runs.

Table 1: Comparative Analysis of Ethereum Smart Contract Vulnerability Testing Tools [7], [8], [9], [10]

* The data in columns 'Optimizations,' 'False-Positive Rates,' and 'Average Execution Times' are rated in relation to the performance data recorded for Slither.

chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/arxiv.org/pdf/2004.08563.pdf

14

Key for reporting text:

Notes Output color coding by severity Reference to SWC Registry Examples & recommendations to fix

Poor No No No

Nice No Yes Yes

Good Yes Yes Yes

Table 2: Metrics for Poor | Nice | Good rating for reporting text generated by different tools.

* If integration with a CI/CD pipeline is not mentioned in the documentation of the tool, then 'No' is reported. However, all tools
can be containerized using Docker and integrated into a CI/CD pipeline.

Note: Our current security pipeline engages Slither and Mythril to perform smart contract
vulnerability analysis. While working with sFuzz, we faced some technical challenges which
could not be resolved and our pull request to resolve the same is still pending for review by
the community. In the meantime, we are also looking into Diligence Fuzzing, a tool by
Consensys, as an alternative. In this paper, we cover only open-source tools. As Diligence
Fuzzing is subscription based, it was kept out of our current analysis scope.

As most of these tools come with platform specific dependencies, we chose to create our
CD/CT pipeline using Docker. The Dockerfile utilizes a rust-based image and installs the tools
and their required dependencies with baseline configuration settings.

5. PROJECT SETUP AND SAMPLE RUN COMMANDS
To setup our own CD/CT pipeline using docker, we can leverage latest rust image and extend
it to install all the required dependencies, as enumerated in the list below:

1. Python

2. Slither

3. Mythril

4. Solidity Version Manager (SVM)

Following is the Dockerfile with all the installation commands:

15

Figure 5: Sample security container Dockerfile.

16

If you need any other project specific tools, you can extend this base image and install them
in your Dockerfile. However, this image should be sufficient for setting up and running
our CD/CT security pipeline.

Next, you need a docker-compose.yml file, to customize the CD/CT suite to your project’s
specific needs. The compose file will pull and build the security container based upon the
default configuration settings, which can be modified as needed. A sample configuration file
is shown in the image below:

Figure 6: Sample fact-solidity-security container docker-compose file.

If you have your own Dockerfile, you can provide it in the `services.solidity-
security.build.{context | dockerfile}` tag. Proxy settings can be done using the `services.solidity-
security.build.args.{http_proxy | https_proxy}` tags. The compose file is configured to read the
tool configuration files from our `security` folder.

The compose file associates the entire project directory structure as an external volume
(`services.solidity-security.volumes`) to the security container. This enables the modifications in
the files to be instantly reflected within the container without having to restart it. This aides the

In case if you are using your custom image, you can
change the image reference here.

17

developers by instantly verifying their changes to ensure that they did not accidentally
introduce a potential bug in the system.

As evident from the image above, the default directory for solidity contracts is `contracts`
and solidity version set is `0.8.12`. This can be set to any other version, which the
prebuilt SVM will install and use to compile contracts.

Developers can toggle between running Slither and Mythril along with an option to run both.
As Mythril is backed by a symbolic execution engine, it takes a bit longer to run. One complete
run on our set of smart contracts lasted 20 minutes. Supporting configurations for both Slither
and Mythril such as modes, depths, execution timeouts are kept in the compose file to allow
easy reconfigurations without building the containers again and again. The container can
easily be integrated with the Jenkins environment with its build status configured to the
outputs of individual tools.

Following are the snapshots of our slither.config.json and mythril.config.json files respectively.
The configuration files provide individual parameters to report output folders, solidity compiler
remapping’s, filter paths and report preferences etc.

Figure 7: Sample Slither config file.

Mythril, doesn’t provide many options to finetune report preferences as provided by Slither.
You can only configure the solidity compiler remappings in its configuration file. Other
required settings are done as run time parameters while executing the Mythril command tool.

Figure 8: Sample Mythril config file.

Finally, we have our script – run-vulnerability-tests.sh. The script, as shown in the image below,
first reads the solidity compiler version, installs it if it isn’t available, sets the directory for
publishing the reports (`security/reports/{mythril | slither}`), and then runs Slither and Mythril,

18

taking the configurations provided in their respective config files as well as environment
variables set in the docker compose file.

The security container can be built and started in the background with the help of the following
command:

docker-compose -f docker-compose-<example>.yml up -d

And the containers can be stopped/torn down with the following command:

docker-compose -f docker-compose-<example>.yml down

Once the container is running, the reports can be generated using the following:

docker exec solidity-security /security/run-vulnerability-tests.sh

Figure 9: Sample script file to run Slither and Mythril.

19

6. CONCLUSION
Securing smart contracts begins with thoroughly reviewing each line of code. It is crucial to
formally verify contracts after they have been developed and tested but implementing
effective security measures during the development process can help prevent bugs and make
informed design choices. The CD/CT security pipeline described in this paper can facilitate
this by allowing developers to continuously test changes without having to continually rebuild
the security container. This system, which is based on Docker, is also easily extensible, saving
time and reducing the need for reconfiguration. Additionally, the reports can be integrated
into Jenkins jobs for more efficient builds.

20

Views expressed are as of the date indicated, based on the information available at that time, and may change. The
opinions provided are those of the author and not necessarily those of Fidelity Investments or its affiliates. Fidelity
does not assume any duty to update any of the information. Fidelity and any other third parties are independent
entities and not affiliated. Mentioning them does not suggest a recommendation or endorsement by Fidelity.

7. REFERENCES

1. More than $1.6 billion exploited from DeFi so far in 2022. (n.d.). Cointelegraph.

2. 5 Most Common Smart Contract Vulnerabilities. (2020).
https://medium.com/cryptronics/the-5-most-common-smart-contract-vulnerabilities-
738de4fae3ba

3. Chibuzor, M. (2022, June 17). Smart contract development: Common mistakes to
avoid. LogRocket Blog.

4. Known Attacks - Ethereum Smart Contract Best Practices. (n.d.). Ethereum-Contract-
Security-Techniques-And-Tips.readthedocs.io.

5. 16 Solidity Hacks/Vulnerabilities, Fixes and Real-World Examples. (2018).
https://medium.com/hackernoon/hackpedia-16-solidity-hacks-vulnerabilities-their-
fixes-and-real-world-examples-f3210eba5148

6. Ethereum Smart Contracts Testing. (2022).
https://ethereum.org/az/developers/docs/smart-contracts/testing/

7. Security Tools - Ethereum Smart Contract Best Practices. (n.d.). Ethereum-Contract-
Security-Techniques-And-Tips.readthedocs.io

8. Kushwaha, S. S., Joshi, S., Singh, D., Kaur, M., & Lee, H.-N. (2022). Ethereum Smart
Contract Analysis Tools: A Systematic Review. IEEE Access, 1–1.

9. The Landscape of Solidity Smart Contract Security Tools in 2020. (2020, December 23).
Kleros.

10. Oualid, Z., & Oualid, Z. (2022, April 26). Top 10 solidity smart contract audit tools. Get
Secure World.

11. Overview · Smart Contract Weakness Classification and Test Cases. (n.d.).
Swcregistry.io.

1079263.1.0

https://medium.com/cryptronics/the-5-most-common-smart-contract-vulnerabilities-738de4fae3ba
https://medium.com/cryptronics/the-5-most-common-smart-contract-vulnerabilities-738de4fae3ba
https://medium.com/hackernoon/hackpedia-16-solidity-hacks-vulnerabilities-their-fixes-and-real-world-examples-f3210eba5148
https://medium.com/hackernoon/hackpedia-16-solidity-hacks-vulnerabilities-their-fixes-and-real-world-examples-f3210eba5148
https://ethereum.org/az/developers/docs/smart-contracts/testing/

	Executive Summary
	1. Introduction
	2. Common Developer Oversights
	2.1. Integer Arithmetic Errors [2,5]
	2.2. Block Gas Limit Vulnerabilities [4,5]
	2.3. Reentrancy [3,4]
	2.4. Frontrunning [4]

	3. Smart Contract Testing and Common Vulnerability Analysis Techniques
	3.1. Manual Testing
	3.2. Automated Testing
	3.2.1. Static Analysis [6]
	3.2.2. Dynamic Analysis [6]

	4. Continuous Development/Continuous Testing (CD/CT) Smart Contract Vulnerability Testing Pipeline
	5. Project Setup and Sample Run Commands
	6. conclusion
	7. references

