

1

By: Chris Helms & Chris McGahon

May, 2023

AN OVERVIEW OF SOLIDITY
DEVELOPMENT FRAMEWORKS

2

TABLE OF CONTENTS

EXECUTIVE SUMMARY.. 3

1. WHAT IS A FRAMEWORK? ... 4

2. MODERN SOLIDITY FRAMEWORKS ... 4

2.1 [REMIX] .. 4
2.2 [TRUFFLE] .. 5
2.3 [HARDHAT] ... 5
2.4 [FOUNDRY] .. 6
2.5 [MARKET TRENDS & POPULARITY] .. 7

3. FRAMEWORK FEATURES ... 7

3.1 [CONFIGURATIONS] ... 8
3.2 [DEVELOPMENT NETWORKS] ... 8
3.3 [UNIT TESTING] .. 9
3.4 [SCRIPTS] ... 9

4. PLUGINS .. 10

4.1 [TYPECHAIN] ... 10
4.2 [CODE COVERAGE] ... 10
4.3 [GAS ANALYSIS] ... 11

5. CONCLUSION .. 12

6. REFERENCES ... 14

3

Executive Summary

Since its introduction in 2014, solidity development has been a rapidly growing and exciting
topic within the world of blockchains and more specifically Ethereum. During its growth,
there have been many different tools & frameworks that support smart contract development
and testing. But with many different choices and paths to go down, what is the best way for
developers to traverse the ever growing & changing options? Here we explore modern
frameworks and their benefits when building smart contracts.

4

What is a Framework?

With Solidity development growing in popularity, engineers require additional support from
tools for building smart contracts safely and efficiently. While online editors are simple to
launch and useful for experimentation, development frameworks are often preferred by
those who want more control over how their environment runs and behaves. Because smart
contracts are a newer technology, the best approaches for features and tools within these
frameworks are still being determined. Our goal is to explore the most popular Solidity
development frameworks and explain their features, the key differences between them, our
insights, discuss market trends, and provide a starting point for those interested in learning
more about these frameworks.

Modern Solidity Frameworks

Figure 1: Remix, a browser-based IDE running in browser.

Remix

Remix is the most common starting point into the foray of writing smart contracts (Fig. 1). As
a browser based integrated development environment (IDE), it requires little setup and is
readily available for anyone interested to use. Remix contains a plethora of different tools for
development, including a basic workspace, compiler, debugger, and can be configured to
deploy to most major remote procedure call (RPC) services. Because of its simplicity, using

5

Remix only requires a basic understanding of blockchain concepts and some experience with
Solidity.

While the online IDE is the most popular form of Remix, its ecosystem is rapidly expanding.
Remix also offers a desktop IDE and Visual Studio Code plugin that provide additional
functionality and a more secure approach of storing files locally on developer's machines.

Additional information on Remix: https://remix.ethereum.org/

Truffle
Truffle is a Node-based framework created by ConsenSys in 2016. It comes packaged with
tools for developing, compiling, JavaScript-based testing, and deploying Ethereum smart
contracts.

Truffle requires that users define a project with a specific organizational structure and
configuration file so it can better aid in development efforts. As part of these efforts, Truffle
utilizes migrations to manage contract versions. Migrations are a concept used across
frameworks and suites that compare current code to deployed code and ensure that the
latest version is deployed prior to testing. This approach means the developer does not need
to consider which contracts should be redeployed after code changes are made. The Truffle
suite also has a proprietary development network called Ganache. When Truffle projects are
deployed to Ganache, they have speed and debugging benefits, as well as additional
contract insight and interaction through the Ganache GUI. Overall, the Truffle ecosystem
contains many tools that were designed to enhance the development experience when used
together.

Additional information on Truffle: https://trufflesuite.com/

HardHat
Hardhat is a Node based framework created by the Nomic Foundation. The framework
shares many features with Truffle including development support, JavaScript testing, and
deploy of contracts. Hardhat has been growing in popularity, boasting a wide range of open-
source plugins, and increasing download counts through NPM [1]. Plugins include gas
analyzers, unit test coverage reports, and additional capabilities for unit testing.

Unlike Truffle, deployed contract versions in Hardhat are managed by the developer. This
requires developers to handle contract deployments themselves, usually through a
JavaScript file combined with various Hardhat packages. Hardhat projects are highly
configurable and allow developers to hook into various parts of the project lifecycle for more
granular control over the framework's behavior.

Additional information on Hardhat: https://hardhat.org/

https://remix.ethereum.org/
https://trufflesuite.com/
https://hardhat.org/

6

Foundry
Foundry is a framework that has recently been gaining popularity with smart contract
developers for its rapidly growing toolset and speed. Foundry's features are accessed
entirely though a command line interface (CLI) that is made of three parts:

• Forge - contract compilation, deploys, and testing.
• Cast - transaction creation, blockchain interaction, data conversions.
• Anvil - local network for testing and debugging contracts.

Foundry is written in a programming language called Rust, so its approach to development
differs from the previously mentioned Node-based Frameworks. Dependencies are installed
using Git submodules instead of NPM packages. Unit tests are written using Solidity through
extension of the DSTest library, an approach taken to ensure all smart contract related
development utilizes the same language.

Foundry focuses on speed, with compilation and testing taking notably shorter time to run
than its competitors. Fig 2 shows the difference in Foundry and Hardhat compilation times
using various caching strategies.

Figure 2: Forge vs Hardhat compilation times [2]

Additional information on Foundry: https://book.getfoundry.sh/

https://book.getfoundry.sh/

7

Market Trends & Popularity
Developers are constantly evaluating tools and features to determine what best fits their
needs in the rapidly changing blockchain space. For early adopters of Solidity, Truffle was the
standard framework for smart contract development. Because of its rich feature set and large
variety of plugins, many projects have been transitioning to Hardhat as of publication. The
change in framework preference can be seen in the below NPM weekly download graphs,
with Truffle's downloads decreasing (fig 3) and Hardhat's steadily increasing (fig 4). Finally,
while Foundry is a developing framework and is still building a full set of capabilities, many
recent projects prefer it for its compilation and testing speed.

Figure 3: Truffle's weekly NPM downloads [3]

Figure 4: Hardhat's weekly NPM downloads [4]

Framework Features

With Solidity development growing in popularity, engineers require additional support from
tools for building smart contracts safely and efficiently. While online editors are simple to
launch and useful for experimentation, development frameworks are often preferred by
those who want more control over how their environment runs and behaves. Because smart
contracts are a newer technology, the best approaches for features and tools within these
frameworks are still being determined. Our goal is to explore the most popular Solidity
development frameworks and explain their features, the key differences between them, our
insights, discuss market trends, and provide a starting point for those interested in learning
more about these frameworks.

8

Configurations

Most modern frameworks have settings that control development environment behavior.
These settings include options for compilers, networks, and accounts.

A configuration file is used to define a baseline for the settings and can be checked into
source control to maintain consistency for all developers working on the project. The
following are some options commonly defined in project configurations:

• Compiler Version / Solc - Framework configurations, along with the project's Solidity
code, determine which compiler version to use and how to obtain it. Common
options include downloading and running the compiler binary directly or performing
compilations using a docker container.

• Networks - Configurations additionally define a set JSON-RPC or web socket
endpoints that represent various Ethereum networks. These networks define separate
environments and can be used for various parts of the development lifecycle,
including development testing or production deploys. In most frameworks, a specific
network can be referenced as a target when using scripts or CLI commands.

• Accounts - Any Ethereum accounts used when developing or deploying to
production can also be defined in the project configuration. This allows developers to
easily access and re-use the set of accounts they require when interacting with an
application. Accounts are typically defined using a mnemonic or private keys directly,
and can be referenced from scripts, tests, and when configuring networks. When
using a mnemonic, most frameworks contain easy to use libraries for generating new
accounts and transaction signing.

Development Networks

When writing smart contracts, it is important to test features and changes before deploying
them to a public network. Solidity frameworks are commonly shipped with additional
software known as "development networks". The most popular options include Hardhat
Network, Ganache, and Anvil.

Development networks allow developers to run an Ethereum Network node on their local
machine. These nodes act as a full-fledged blockchain and come packaged with a series of
additional features that are useful during Solidity development. Nodes also expose both
JSON-RCP and WebSocket endpoints that mimic public network node behavior. Developers
can use these endpoints to retrieve information about the blockchain, interact with smart
contracts, transfer Ether, etc.

9

Some of the most valuable tools these networks provide pertain to debugging and
environment control. Development nodes expose additional functionality to manipulate
blockchain properties for testing purposes. These features include manual block-time
definition, swapping between manual and auto-mining strategies, and mimicking
transactions sent from a chosen address. Because these capabilities often result in invalid
blockchain states, they are limited to development environments and not available on real
world nodes.

Development networks also support network forking. Forking allows developers to duplicate
an existing blockchain's state, including contracts, data, and Ethereum balances for local use.
Forking is useful for examining contracts on external networks and testing planned
transactions against them. Since forking captures the full state of a target chain, testing a
contract on a fork may reveal problems or bugs prior to deploying to its real-world
counterpart.

Unit Testing

Like Web2, the blockchain development lifecycle uses unit testing to validate the basic
behavior of code. Truffle and Hardhat unit tests are written in JavaScript and utilize the
popular testing libraries Mocha and Chai. Foundry unit tests are written in Solidity, with
testing classes based on the DSTest library. Each approach to testing has pros and cons, with
JavaScript based tests being generally more familiar to developers and Solidity based tests
more naturally integrating with the smart contracts being tested.

During unit testing, developers require ways to manipulate Ethereum properties like account
balances, gas prices, and block-time. Each framework uses a separate library to provide
access to these controls and other useful testing tools. Using these libraries, a typical unit
testing flow would include account preparation, contract deploy and setup, running test-
specific interaction with the contract, and validation of the blockchain state afterwards. Some
libraries offer additional features for improved testing, such as handles to previous
blockchain states for faster testing and additional logging capabilities.

Scripts

While most frameworks expose a CLI that can be used for singular actions, developers often
need to run many commands back-to-back or handle more complex requirements. Scripts
are a general term for code that performs actions against a blockchain. This may include
deploying and interacting with contracts, transferring ETH, retrieving account details, etc.

Scripts rely on underlying libraries to interface with the desired blockchain. Web3js is used by
Truffle, while Ethers is preferred by Hardhat. While these libraries are separate, they provide
similar capabilities for contract interaction and testing. Because Foundry is based in Rust, its
approach is different from its node-based counterparts. Foundry scripts are mainly written in
Bash and use the Cast CLI for all blockchain related needs.

10

Scripts can be written to handle a series of interactions with a blockchain. Most frameworks
additionally support a variety of plugins that define additional features. An example is the
TypeChain plugin, which generates helper classes for Typescript code based on a project's
smart contracts. Scripts generally reference a specific configuration when they are run that
may include specific network and account settings. This allows scripts to be written
generically and run against multiple environments, contracts, or accounts depending on
development requirements.

Plugins

Developers may determine an additional need or functionality for their project that is not
included out of the box with their framework. Plugins are installed alongside frameworks and
provide expanded features and tools. The following section covers common plugins used for
developing and testing smart contracts.

TypeChain

TypeChain is designed to help with contract interaction when using Typescript. By
generating types based on smart contract ABIs, developers are given easier access to
contract functions and state variables. This improves usability when writing tests and scripts
in Typescript. TypeChain contains support for the existing Node based frameworks, along
with multiple settings for various project configurations.

Additional information on TypeChain: https://github.com/dethcrypto/TypeChain

Code Coverage

Code coverage is a metric used software developers use to determine which lines,
conditionals, and functions are covered while testing. A coverage report is printed with stats
broken down by file and function. Plugins may also show graphical indications of coverage
by highlighting tested lines of code within the IDE.

While Solidity frameworks normally ship with unit testing capabilities, not all of them include
features for outputting test coverage reports. Truffle and Hardhat can be modified to perform
this behavior by installing the solidity-coverage package [5], which creates coverage reports
and can be further configured to display a graphical overlay within Visual Studio Code.
Alternatively, Foundry natively includes unit testing coverage as part of the Forge CLI which
can generate reports in multiple formats but does not include graphical capabilities for IDEs.

Because development tools for smart contracts are still within their infancy, accuracy and
behavior is not yet guaranteed for coverage reports. Complex contract designs like
upgradeability can cause inconsistent behavior in the above tools. Since these features are
still being improved to work with more advanced contracts, developers may use them as a
guide for unit testing quality and validate the resulting reports (See fig. 5).

https://github.com/dethcrypto/TypeChain

11

Gas Analysis
A key difference between developing smart contracts and traditional programs is the
concept of gas, the resource used to carry out operations on the blockchain. Because gas
acts as a digital commodity, it is important to ensure smart contracts are optimized and use it
efficiently. A useful tool in determining this metric is a gas analyzer, which creates a report on
the gas used by a smart contract. These reports can be used to determine if a contract is
using gas optimally or to track changes in efficiency when developing contract code.

Out of the box, Remix can be configured to automatically show the gas analysis of smart
contracts. Foundry also ships with native gas analysis support using the Forge CLI. Truffle
and Hardhat require additional plugins to expose this feature, with the most used being eth-
gas-reporter [7] and hardhat-gas-reporter [8]. By installing and configuring these packages
within a project, a gas analysis can be printed to the terminal when each of the unit tests are
run. An example of this report is shown for a Hardhat project in Fig 6.

Figure 5: Solidity Coverage [6]

12

Conclusion

This article provides an overview of Solidity frameworks and their features. As smart contract
development grows, so do the related features and tools. The constantly evolving nature of
the field is shown with user trends amongst Remix, Truffle, Hardhat, Foundry, and their
open-source plugins. Understanding new features and their uses sharpens developer skills
and their understanding of the blockchain ecosystem. Using these frameworks, developers
of any skill level can begin utilizing best practices and powerful toolsets when working with
Solidity.

Figure 6: Gas report sample [9]

13

 Truffle Hardhat Foundry

Language/Framework Node Node Rust

Development Network Ganache Hardhat Network Anvil

Unit Testing JavaScript JavaScript Solidity

Scripts JavaScript JavaScript Bash

Code Coverage Support Moderate Full Moderate

Gas Analysis Support Full Full Full

Figure 7: Framework feature comparison.

14

6. REFERENCES

1. NPM. (2022). NPM.
https://www.npmjs.com/

2. Foundry-Rs. (2023). Foundry-rs/foundry: Foundry is a blazing fast, portable and
Modular Toolkit for Ethereum application development written in rust. GitHub.
https://github.com/foundry-rs/foundry

3. Truffle. (2022). NPM.
https://www.npmjs.com/package/truffle

4. Hardhat. (2022). NPM.
https://www.npmjs.com/package/hardhat

5. Solidity-coverage. (2022). NPM.
https://www.npmjs.com/package/solidity-coverage

6. Digitalime. (2018). Solidity unit tests & code coverage with etherlime. Medium.
https://medium.com/limechain/solidity-unit-tests-code-coverage-with-etherlime-
9e2aa8da516a

7. Eth-gas-reporter. NPM. (2022).
https://www.npmjs.com/package/eth-gas-reporter

8. Hardhat-gas-reporter. NPM. (2022).
https://www.npmjs.com/package/hardhat-gas-reporter

9. Cgewecke. (2022). Cgewecke/ETH-gas-reporter: Gas usage per unit test. average gas
usage per method. A mocha reporter. GitHub.
https://github.com/cgewecke/eth-gas-reporter

Views expressed are as of the date indicated, based on the information available at that time, and
may change. The opinions provided are those of the author and not necessarily those of Fidelity
Investments or its affiliates. Fidelity does not assume any duty to update any of the information.
Fidelity and any other third parties are independent entities and not affiliated. Mentioning them
does not suggest a recommendation or endorsement by Fidelity.

https://www.npmjs.com/
https://github.com/foundry-rs/foundry
https://www.npmjs.com/package/truffle
https://www.npmjs.com/package/hardhat
https://www.npmjs.com/package/solidity-coverage
https://medium.com/limechain/solidity-unit-tests-code-coverage-with-etherlime-9e2aa8da516a
https://medium.com/limechain/solidity-unit-tests-code-coverage-with-etherlime-9e2aa8da516a
https://www.npmjs.com/package/eth-gas-reporter
https://www.npmjs.com/package/hardhat-gas-reporter
https://github.com/cgewecke/eth-gas-reporter

	Truffle
	HardHat
	Foundry
	Market Trends & Popularity
	Gas Analysis
	6. References

